Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.210
Filtrar
1.
Sci Rep ; 14(1): 7377, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570545

RESUMO

Cholera continues to represent a major public health concern in Ethiopia. The country has developed a Multi-sectoral National Cholera Elimination Plan in 2022, which targets prevention and control interventions in cholera hotspots. Multiple methods to classify cholera hotspots have been used in several countries. Since 2014, a classification method developed by United Nations Children's Fund has been applied to guide water, sanitation and hygiene interventions throughout Sub-Saharan Africa based on three outbreak parameters: frequency, duration and standardized attack rate. In 2019, the Global Task Force on Cholera Control (GTFCC) proposed a method based on two parameters: average annual cholera incidence and persistence. In 2023, an updated GTFCC method for multisectoral interventions considers three epidemiological indicators (cumulative incidence, cumulative mortality and persistence,) and a cholera-case confirmation indicator. The current study aimed to classify cholera hotspots in Ethiopia at the woreda level (equivalent to district level) applying the three methods and comparing the results to optimize the hotspot targeting strategy. From 2015 to 2021, cholera hotspots were located along major routes between Addis Ababa and woredas adjacent to the Kenya and Somalia borders, throughout Tigray Region, around Lake Tana, and in Afar Region. The multi-method comparison enables decision makers to prioritize interventions according to a sub-classification of the highest-priority areas.


Assuntos
Cólera , Criança , Humanos , Cólera/epidemiologia , Cólera/prevenção & controle , Etiópia/epidemiologia , Saúde Pública , Surtos de Doenças/prevenção & controle , Saneamento
2.
Cell Host Microbe ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38579715

RESUMO

Many, if not all, bacteria use quorum sensing (QS) to control collective behaviors, and more recently, QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or "listen in" on the host's communication processes, to switch between lytic and lysogenic modes of infection. Here, we study the interaction of Vibrio cholerae with the lysogenic phage VP882, which is activated by the QS molecule DPO. We discover that induction of VP882 results in the binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompetes and downregulates host-encoded small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs, and we demonstrate that one of these sRNAs, named VpdS, promotes phage replication by regulating host and phage mRNA levels. We further show that host-encoded sRNAs can antagonize phage replication by downregulating phage mRNA expression and thus might be part of the host's phage defense arsenal.

3.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617239

RESUMO

A major challenge faced by Vibrio cholerae is constant predation by bacteriophage (phage) in aquatic reservoirs and during infection of human hosts. To overcome phage predation, V. cholerae has evolved a myriad of phage defense systems. Although several novel defense systems have been discovered, we hypothesized more were encoded in V. cholerae given the relative paucity of phage that have been isolated which infect this species. Using a V. cholerae genomic library, we identified a Type IV restriction system consisting of two genes within a 16kB region of the Vibrio pathogenicity island-2 that we name TgvA and TgvB (Type I-embedded gmrSD-like system of VPI-2). We show that both TgvA and TgvB are required for defense against T2, T4, and T6 by targeting glucosylated 5-hydroxymethylcytosine (5hmC). T2 or T4 phages that lose the glucose modification are resistant to TgvAB defense but exhibit a significant evolutionary tradeoff becoming susceptible to other Type IV restriction systems that target unglucosylated 5hmC. We show that additional phage defense genes are encoded in VPI-2 that protect against other phage like T3, secΦ18, secΦ27 and λ. Our study uncovers a novel Type IV restriction system in V. cholerae, increasing our understanding of the evolution and ecology of V. cholerae while highlighting the evolutionary interplay between restriction systems and phage genome modification.

4.
Mol Biol Rep ; 51(1): 512, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622483

RESUMO

Bacterial enteritis has a substantial role in contributing to a large portion of the global disease burden and serves as a major cause of newborn mortality. Despite advancements gained from current animal and cell models in improving our understanding of pathogens, their widespread application is hindered by apparent drawbacks. Therefore, more precise models are imperatively required to develop more accurate studies on host-pathogen interactions and drug discovery. Since the emergence of intestinal organoids, massive studies utilizing organoids have been conducted to study the pathogenesis of bacterial enteritis, revealing new mechanisms and validating established ones. In this review, we focus on the advancements of several bacterial pathogenesis mechanisms observed in intestinal organoid/enteroid models, exploring the host response and bacterial effectors during the infection process. Finally, we address the features that warrant additional investigation or could be enhanced in existing organoid models in order to guide future research endeavors.


Assuntos
Infecções Bacterianas , Enterite , Animais , Intestinos/microbiologia , Bactérias , Organoides
5.
Microorganisms ; 12(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543543

RESUMO

Cholera, a deadly diarrheal disease, continues to ravage various parts of the world. It is caused by Vibrio cholerae, an important member of the gamma-proteobacteria. Based on certain genetic and phenotypic tests, the organism is classified into two major biotypes, namely classical and El Tor. The El Tor and its variants are majorly responsible for the ongoing seventh pandemic across the globe. Previously, we have shown that cross-feeding of glucose metabolic acidic by-products of gut commensals can severely affect the viability of the biotypes. In this work, we examined the effect of L-ascorbic acid on the survival of Vibrio cholerae strains belonging to both biotypes and different serotypes. We observed that L-ascorbic acid effectively restricts the growth of all strains under various conditions including strains adapted to acid stress. In addition, L-ascorbic acid is also effective in decreasing bile-induced biofilms of Vibrio cholerae.

6.
BMC Infect Dis ; 24(1): 360, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549076

RESUMO

BACKGROUND: Since the early 1970s, cholera outbreaks have been a major public health burden in the Democratic Republic of Congo (DRC). Cholera cases have been reported in a quasi-continuous manner in certain lakeside areas in the Great Lakes Region. As these cholera-endemic health zones constitute a starting point for outbreaks and diffusion towards other at-risk areas, they play a major role in cholera dynamics in the country. Monitoring the spatiotemporal dynamics of cholera hotspots and adjusting interventions accordingly thus reduces the disease burden in an efficient and cost-effective manner. METHODS: A literature review was conducted to describe the spatiotemporal dynamics of cholera in the DRC at the province level from 1973 to 1999. We then identified and classified cholera hotspots at the provincial and health zone levels from 2003 to 2022 and described the spatiotemporal evolution of hotspots. We also applied and compared three different classification methods to ensure that cholera hotspots are identified and classified according to the DRC context. RESULTS: According to all three methods, high-priority hotspots were concentrated in the eastern Great Lakes Region. Overall, hotspots largely remained unchanged over the course of the study period, although slight improvements were observed in some eastern hotspots, while other non-endemic areas in the west experienced an increase in cholera outbreaks. The Global Task Force on Cholera Control (GTFCC) and the Department of Ecology and Infectious Disease Control (DEIDC) methods largely yielded similar results for the high-risk hotspots. However, the medium-priority hotspots identified by the GTFCC method were further sub-classified by the DEIDC method, thereby providing a more detailed ranking for priority targeting. CONCLUSIONS: Overall, the findings of this comprehensive study shed light on the dynamics of cholera hotspots in the DRC from 1973 to 2022. These results may serve as an evidence-based foundation for public health officials and policymakers to improve the implementation of the Multisectoral Cholera Elimination Plan, guiding targeted interventions and resource allocation to mitigate the impact of cholera in vulnerable communities.


Assuntos
Cólera , Humanos , Cólera/epidemiologia , República Democrática do Congo/epidemiologia , Surtos de Doenças , Saúde Pública
7.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141012, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492831

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are redox enzymes widely studied for their involvement in microbial and fungal biomass degradation. The catalytic versatility of these enzymes is demonstrated by the recent discovery of LPMOs in arthropods, viruses, insects and ferns, where they fulfill diverse functions beyond biomass conversion. This mini-review puts a spotlight on a recently recognized aspect of LPMOs: their role in infectious processes in human pathogens. It discusses the occurrence and potential biological mechanisms of LPMOs associated with human pathogens and provides an outlook on future avenues in this emerging and exciting research field.

8.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449342

RESUMO

Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae , Humanos , Cólera/diagnóstico , Cólera/epidemiologia , Cólera/prevenção & controle , Vibrio cholerae/genética , Bacteriófagos/fisiologia , Filogenia , Toxina da Cólera/genética , Toxina da Cólera/metabolismo
9.
Microb Ecol ; 87(1): 51, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488929

RESUMO

In aquatic environments, Vibrio and cyanobacteria establish varying relationships influenced by environmental factors. To investigate their association, this study spanned 5 months at a local shrimp farm, covering the shrimp larvae stocking cycle until harvesting. A total of 32 samples were collected from pond A (n = 6), pond B (n = 6), effluent (n = 10), and influent (n = 10). Vibrio species and cyanobacteria density were observed, and canonical correspondence analysis (CCA) assessed their correlation. CCA revealed a minor correlation (p = 0.847, 0.255, 0.288, and 0.304) between Vibrio and cyanobacteria in pond A, pond B, effluent, and influent water, respectively. Notably, Vibrio showed a stronger correlation with pH (6.14-7.64), while cyanobacteria correlated with pH, salinity (17.4-24 ppt), and temperature (30.8-31.5 °C), with salinity as the most influential factor. This suggests that factors beyond cyanobacteria influence Vibrio survival. Future research could explore species-specific relationships, regional dynamics, and multidimensional landscapes to better understand Vibrio-cyanobacteria connections. Managing water parameters may prove more efficient in controlling vibriosis in shrimp farms than targeting cyanobacterial populations.


Assuntos
Cianobactérias , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animais , Lagoas , Água , Aquicultura , Penaeidae/microbiologia
10.
Infect Genet Evol ; 120: 105587, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518953

RESUMO

Non-O1/non-O139 Vibrio cholerae (NOVC) are ubiquitous in aquatic ecosystems. In rare cases, they can cause intestinal and extra-intestinal infections in human. This ability is associated with various virulence factors. The presence of NOVC in German North Sea and Baltic Sea was observed in previous studies. However, data on virulence characteristics are still scarce. Therefore, this work aimed to investigating the virulence potential of NOVC isolated in these two regions. In total, 31 NOVC strains were collected and subjected to whole genome sequencing. In silico analysis of the pathogenic potential was performed based on the detection of genes involved in colonization and virulence. Phenotypic assays, including biofilm formation, mobility and human serum resistance assays were applied for validation. Associated toxin genes (hlyA, rtxA, chxA and stn), pathogenicity islands (Vibrio pathogenicity island 2 (VPI-II) and Vibrio seventh pathogenicity island 2 (VSP-II)) and secretion systems (Type II, III and VI secretion system) were observed. A maximum likelihood analysis from shared core genes revealed a close relationship between clinical NOVCs published in NCBI and environmental strains from this study. NOVC strains are more mobile at 37 °C than at 25 °C, and 68% of the NOVC strains could form strong biofilms at both temperatures. All tested strains were able to lyse erythrocytes from both human and sheep blood. Additionally, one strain could survive up to 60% and seven strains up to 40% human serum at 37 °C. Overall, the genetic virulence profile as well as the phenotypic virulence characteristics of the investigated NOVC from the German North Sea and Baltic Sea suggest potential human pathogenicity.

11.
Mol Biol Rep ; 51(1): 409, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461219

RESUMO

BACKGROUND: This is a unique and novel study delineating the genotyping and subsequent prediction of AMR determinants of Vibrio cholerae revealing the potential of contemporary strains to serve as precursors of severe AMR crisis in cholera. METHODS AND RESULTS: Genotyping of representative strains, VC1 and VC2 was undertaken to characterize antimicrobial resistance genes (ARGs) against chloramphenicol, SXT, nalidixic acid and streptomycin against which they were found to be resistant by antibiogram analysis in our previous investigation. strAB, sxt, sul2, qace∆1-sul1 were detected by PCR. Genome annotation and identification of ARGs with WGS helped to detect the presence of almG, varG, strA (APH(3'')-Ib), strB (APH(6)-Id), sul2, catB9, floR, CRP, dfrA1 genes. Signatures of resistance determinants and protein domains involved in antimicrobial resistance, primarily, efflux of antibiotics were identified on the basis of 30-100% homology to reference proteins. These domains were predicted to be involved in other metabolic functions on the basis of 100% identity with 100% coverage with reference protein and nucleotide sequences and were predicted to be of a diverse taxonomic origin accentuating the influence of the microbiota on AMR acquisition. Sequence analysis of QRDR (quinolone resistance-determining region) revealed SNPs. Cytoscape v3.8.2 was employed to analyse protein-protein interaction of MDR proteins, MdtA and EmrD-2, with nodes of vital AMR pathways. Vital nodes involved in efflux of different classes of antibiotics were found to be absent in VC1 and VC2 justifying the sensitivity of these strains to most antibiotics. CONCLUSIONS: The study helped to examine the resistome of VC isolated from recent outbreaks to understand the underlying reason of sensitivity to most antibiotics and also to characterize the ARGs in their genome. It revealed that VC is a reservoir of signatures of resistance determinants and serving as precursors for severe AMR crisis in cholera. This is the first study, to our knowledge, which has scrutinized and presented systematically, information on prospective domains which bear the potential of serving as AMR determinants in VC with the help of bioinformatic tools. This pioneering approach may help in the prediction of AMR landfalls and benefit epidemiological surveillance and early warning systems.


Assuntos
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Cólera/tratamento farmacológico , Cólera/epidemiologia , Antibacterianos/farmacologia , Estudos Prospectivos , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
12.
Expert Opin Ther Pat ; : 1-18, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38446009

RESUMO

INTRODUCTION: Vibrio cholerae bacteria cause an infection characterized by acute diarrheal illness in the intestine. Cholera is sustained by people swallowing contaminated food or water. Even though symptoms can be mild, if untreated disease becomes severe and life-threatening, especially in low-income countries. AREAS COVERED: After a description of the most recent literature on the pathophysiology of this infection, we searched for patents and literature articles following the PRISMA guidelines, filtering the results disclosed from 2020 to present. Moreover, some innovative molecular targets (e.g., carbonic anhydrases) and pathways to counteract this rising problem were also discussed in terms of design, structure-activity relationships and structural analyses. EXPERT OPINION: This review aims to cover and analyze the most recent advances on the new druggable targets and bioactive compounds against this fastidious pathogen, overcoming the use of old antibiotics which currently suffer from high resistance rate.

13.
Microbiol Resour Announc ; 13(3): e0082723, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345380

RESUMO

Vibrio cholerae has caused seven cholera pandemics in the past two centuries. The seventh and ongoing pandemic has been particularly severe on the African continent. Here, we report long read-based genome sequences of six V. cholerae strains isolated in the Democratic Republic of the Congo between 2009 and 2012.

14.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366392

RESUMO

The evolutionary relationship between the biofilm lifestyle and antibiotic resistance enzymes remains a subject of limited understanding. Here, we investigate how ß-lactamases affect biofilm formation in Vibrio cholerae and how selection for a biofilm lifestyle impacts the evolution of these enzymes. Genetically diverse ß-lactamases expressed in V. cholerae displayed a strong inhibitory effect on biofilm production. To understand how natural evolution affects this antagonistic pleiotropy, we randomly mutagenized a ß-lactamase and selected for elevated biofilm formation. Our results revealed that biofilm evolution selects for ß-lactamase variants able to hydrolyze ß-lactams without inhibiting biofilms. Mutational analysis of evolved variants demonstrated that restoration of biofilm development was achieved either independently of enzymatic function or by actively leveraging enzymatic activity. Taken together, the biofilm lifestyle can impose a profound selective pressure on antimicrobial resistance enzymes. Shedding light on such evolutionary interplays is of importance to understand the factors driving antimicrobial resistance.


Assuntos
Anti-Infecciosos , Vibrio cholerae , beta-Lactamases/genética , Biofilmes , Vibrio cholerae/genética , beta-Lactamas/farmacologia , Anti-Infecciosos/farmacologia
15.
Cureus ; 16(2): e53802, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333000

RESUMO

Cholera meningitis is a rare complication of Vibrio cholerae (V. cholerae) infection. We present a case of cholera meningitis caused by toxigenic V. cholerae O1 in a 34-year-old male with sickle cell disease (SCD). The patient presented with fever, diarrhea, and altered mental status. Cerebrospinal fluid (CSF) analysis showed 5,231 cells/µL (53.9% neutrophils), a protein level of 462 mg/dL, and a glycorrhachia level of 26 mg/dL. V. cholerae O1 was isolated on CSF culture. Despite the patient undergoing antimicrobial therapy, brain imaging revealed basal ganglia ring-enhancing lesions suggestive of tuberculomas. Antituberculosis treatment and steroids led to clinical improvement. This report highlights the need to consider V. cholerae meningitis in patients with SCD who present with diarrhea and altered mental status. Prompt diagnosis and appropriate antimicrobial therapy are keys to improving patient outcomes.

16.
Mol Microbiol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323722

RESUMO

The diarrheal disease cholera is caused by the versatile and responsive bacterium Vibrio cholerae, which is capable of adapting to environmental changes. Among others, the alternative sigma factor RpoS activates response pathways, including regulation of motility- and chemotaxis-related genes under nutrient-poor conditions in V. cholerae. Although RpoS has been well characterised, links between RpoS and other regulatory networks remain unclear. In this study, we identified the ArcAB two-component system to control rpoS transcription and RpoS protein stability in V. cholerae. In a manner similar to that seen in Escherichia coli, the ArcB kinase not only activates the response regulator ArcA but also RssB, the anti-sigma factor of RpoS. Our results demonstrated that, in V. cholerae, RssB is phosphorylated by ArcB, which subsequently activates RpoS proteolysis. Furthermore, ArcA acts as a repressor of rpoS transcription. Additionally, we determined that the cysteine residue at position 180 of ArcB is crucial for signal recognition and activity. Thus, our findings provide evidence linking RpoS response to the anoxic redox control system ArcAB in V. cholerae.

17.
Cureus ; 16(1): e52854, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38406145

RESUMO

Vibrio cholerae is the culprit behind many endemics globally. Classically characterized by profuse diarrhea with a "rice water" description, cholera can be fatal if not treated promptly. However, infected individuals can present with little to no symptoms. These individuals allow for a carrier state and play a large part in the survival of an endemic. Asymptomatic patients can present in areas where Cholera is not endemic. Herein, we present an atypical case of vibrio chloerae infection without diarrhea in the setting of large bowel obstruction secondary to colon cancer. We aim to highlight the unusual presentation of a cholera infection.

18.
Cell Rep ; 43(2): 113750, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38340318

RESUMO

To maintain an effective barrier, intestinal progenitor cells must divide at a rate that matches the loss of dead and dying cells. Otherwise, epithelial breaches expose the host to systemic infection by gut-resident microbes. Unlike most pathogens, Vibrio cholerae blocks tissue repair by arresting progenitor proliferation in the Drosophila model. At present, we do not understand how V. cholerae circumvents such a critical antibacterial defense. We find that V. cholerae blocks epithelial repair by activating the growth inhibitor bone morphogenetic protein (BMP) pathway in progenitors. Specifically, we show that interactions between V. cholerae and gut commensals initiate BMP signaling via host innate immune defenses. Notably, we find that V. cholerae also activates BMP and arrests proliferation in zebrafish intestines, indicating an evolutionarily conserved link between infection and failure in tissue repair. Our study highlights how enteric pathogens engage host immune and growth regulatory pathways to disrupt intestinal epithelial repair.


Assuntos
Vibrio cholerae , Peixe-Zebra , Animais , Antibacterianos , Proteínas Morfogenéticas Ósseas , Drosophila , Proliferação de Células
19.
BMC Genom Data ; 25(1): 18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360573

RESUMO

OBJECTIVE: Vibrio cholerae is an enteric pathogen that poses a significant threat to global health. It causes severe dehydrating diarrheal disease cholera in humans. V. cholerae could be acquired either from consuming contaminated seafood or direct contact with polluted waters. As part of a larger program that assesses the microbial community profile in aquatic systems, V. cholerae strain NB-183 was isolated and characterized using a combination of culture- and whole-genome sequencing-based approaches. DATA DESCRIPTION: Here we report the assembled and annotated whole-genome sequence of a V. cholerae strain NB-183 isolated from a recreational freshwater lake in Ontario, Canada. The genome was sequenced using short-read Illumina systems. The whole-genome sequencing yielded 4,112,549 bp genome size with 99 contigs with an average genome coverage of 96× and 47.42% G + C content. The whole genome-based comparison, phylogenomic and gene repertoire indicates that this strain harbors multiple virulence genes and biosynthetic gene clusters. This genome sequence and its associated datasets provided in this study will be an indispensable resource to enhance the understanding of the functional, ecological, and evolutionary dynamics of V. cholerae.


Assuntos
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Ontário , Virulência/genética , Água Doce
20.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370713

RESUMO

Vibrio cholerae O1 causes the diarrheal disease cholera, and the small intestine is the site of active infection. During cholera, cholera toxin is secreted from V. cholerae and induces a massive fluid influx into the small intestine, which causes vomiting and diarrhea. Typically, V. cholerae genomes are sequenced from bacteria passed in stool, but rarely from vomit, a fluid that may more closely represents the site of active infection. We hypothesized that the V. cholerae O1 population bottlenecks along the gastrointestinal tract would result in reduced genetic variation in stool compared to vomit. To test this, we sequenced V. cholerae genomes from ten cholera patients with paired vomit and stool samples. Genetic diversity was low in both vomit and stool, consistent with a single infecting population rather than co-infection with divergent V. cholerae O1 lineages. The number of single nucleotide variants decreased between vomit and stool in four patients, increased in two, and remained unchanged in four. The number of genes encoded in the V. cholerae genome decreased between vomit and stool in eight patients and increased in two. Pangenome analysis of assembled short-read sequencing demonstrated that the toxin-coregulated pilus operon more frequently contained deletions in genomes from vomit compared to stool. However, these deletions were not detected by PCR or long-read sequencing, indicating that interpreting gene presence or absence patterns from short-read data alone may be incomplete. Overall, we found that V. cholerae O1 isolated from stool is genetically similar to V. cholerae recovered from the upper intestinal tract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...